
Electric Drives

The right powertrain selection is critical to the automotive industry’s transition to  

electric mobility. The Electrified Powertrain Optimization Process from Drive System  

Design reduces the risk at the initial stages by simulating thousands of configurations  

quickly to help identify the optimal powertrain, and with verifiable accuracy.

g Against the backdrop of a de -
manding and constantly-evolving  
regulatory landscape, automobile  
ma  nufacturers have been tasked  
with transitioning away from the  
tried and trusted technologies of the  
last hundred years to a vehicle world 

propelled by entirely new electric drive 
platforms. To achieve this, OEMs and 
tier-1 supp liers must develop new tech-
nologies,  components and architectures, 
as well as modules for the integration 
and power distribution that bind these  
new sub-systems together.

Often this involves establishing new 
material supply chains while navigat-
ing volatile geopolitical sensitivities. Vast 
investments must be made, just as reve-
nues from conventionally-fueled vehicles 
face a legislated decline while a global 
semiconductor shortage creates ongoing 
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Electric Drives

disruptions. “Backing the wrong horse” 
can leave an OEM exposed to capricious 
material prices and supply chain diffi-
culties, or overly-invested in an evolu-
tionary dead-end.

The traditional software tools and pro-
cesses used to design and optimize pow-
ertrains have not necessarily kept pace 
with new technologies or changing 
industry circumstances. They remain 
time consuming, are easily influenced 
by subjective views, and are often built 
on conventional combustion-engine 
architectures – an approach that fails to 
take advantage of key benefits and flexi-
bilities available within a fully  electrified 
design.

Developing an electric powertrain as 
a whole – a unified system with compo-
nents selected and optimized to work 
in harmony with one another – is the 
only way to ensure the complex inter-
play between components and sub- 
systems can be considered as part of 
the solution, rather than a series of 
 individual problems that remain to 
be solved. For example, specifying an 
expensive but highly energy-efficient 
vehicle propulsion motor may seem 
counter-intuitive on a simple cost/benefit 
analysis, but that may open the door to 
the use of a smaller, cheaper, and lighter 
battery with a reduced  capacity that low-
ers the overall vehicle cost, while still 
achieving the required range.

CONSIDERATION OF  
REAL-WORLD ISSUES

Experience gained over more than ten 
years of delivering electrified powertrain 
programs grants engineering services 
provider Drive  System Design (DSD) 
valuable insight into the challenges faced 
by OEMs and Tier-1 suppliers. Developed 
specifically to capitalize on that experi-
ence, the Electrified Powertrain Optimi-
zation Process (ePOP), FIGURE 1, is a soft-
ware tool created in-house to consider 
real-world issues such as range and 
energy efficiency during the early stages 
of powertrain design, whether for an 
individual component or a family of 
 systems across a range of markets.

The process enables the mapping 
and exploration of a large number of 
 prospective powertrain options within 
a given design space. By generating 
thousands of powertrain combinations, 
taking into account parameters such 
as mass, aerodynamic coefficients, and 
 performance targets, the complex rela-
tionships between sub-systems can be 
exhaustively analyzed. Each combina-
tion includes the necessary data for a 
thorough simulation determined over 
a range of drive cycles, with the results 
compared through intelligent trade-
off algorithms against the required 
 para meters, such as performance or 
vehicle range.
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FIGURE 1 Overview of the  
ePOP simulation process  
with powertrain and  
vehicle model  
(© Drive System Design)
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Because the process is entirely  
objective, it can lead to configurations 
that might not have been considered 
otherwise. And by allowing greater 
numbers of powertrain permutations  
to be analyzed, these can be fully 
explored in ways that have not been  
possible before.

A post-processing interface permits 
drilling-down through the results to 
quickly establish where the most entic-
ing opportunities lie – and to do so in a 
fraction of the time normally required. 
By assessing the output results against 
multiple criteria, such as cost or energy 
demand, it becomes clear which are the 
prime candidates to take forward. Com-
bining this information with learned 
experience and existing knowledge 
helps narrow in on the optimal solu-
tion for the required objectives, signi-
ficantly shortening the innovation  
stage of powertrain development.

ADDITIONAL BENEFITS

Because a broad range of configurations 
can be assessed in the ePOP tool within 
the same design space, it is possible to 
identify trends that arise in attempting 

to meet the required objectives. For 
example, multi-speed transmissions 
deliver greater flexibility, particularly 
for heavier vehicles. The high cost of 
today’s battery technology currently 
points to investing in efficient drive 
modules to attain a given vehicle range 
rather than specifying a larger battery 
pack. However, as battery costs change 
and the economics are revised, the opti-
mal solution may alter to favor an alter-
native configuration. Performing this 
analysis at the very earliest concept 
stages, before the project has been fully 
defined, can reduce much of the initial 
risk and deliver  con fidence in the 

selected strategy,  leading to reduced 
development costs and a reduced time-
to-market for the eventual product.

For solutions that rely on future 
 technologies, the process permits the 
forecasting of the economically viable 
tipping point, and which applications 
are likely to benefit the most. This 
enables development to begin ahead 
of time such that when the economic 
 situation improves, the products have 
a head start in the market.

The process further enables tier-1 
automotive suppliers to assess their 
products against a vehicle manufactur-
er’s requirements to determine their 
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Efficiency map
Maximum torque
Continuous torque
WLTP drive cycle

No. Correlation step Complete WLTP energy demand error

1 Baseline ePOP – no modifications 3.22 %

2 Transmission calibrated 0.90 %

3 Transmission, motor, inverter fine-tuned 0.25 %

FIGURE 2 Combined plot of the motor operating 
point on system level (© Drive System Design)

TABLE 1 Achieved correlation of simulation and real test: at the outset (No. 1), with transmission-only 
 optimization (No. 2), and after final fine-tuning (No. 3) including motor and inverter optimization  
(© Drive System Design)
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competitiveness or, indeed, identify 
whether an opportunity exists for fur-
ther development to achieve a better 
match. In addition, the process can help 
develop understanding across disci-
plines by quantifying the relative bene-
fit or penalty of an integration solution 
on the powertrain as a whole, ulti-
mately leading to a decision that is 
demonstrably better for the entire vehi-
cle platform.

INTEGRATION INTO  
A SINGLE ASSEMBLY

The Advanced Cooling and Control of 
High Speed e-Drive (ACeDrive) is a col-
laboration between DSD, GKN Automo-
tive, and the University of Nottingham, 
backed by the Advanced Propulsion Cen-
tre (APC). It aims to develop the world’s 
lightest and most efficient electric vehi-
cle powertrain for the volume market. 
By adopting new concepts of cooling 
and system integration, with a signifi-
cant reduction in the number and size 
of components, the collaboration tar-
gets a 25-% reduction in packaging 
size and cost, a 20-% drop in weight, 
and a 10-% efficiency increase over 
 current solutions.

The project results in a downsized 
motor, optimized transmission, and 
power-efficient inverter integrated into 
a single assembly, helping to achieve 
the required packaging reduction. 
Fewer mechanical and electrical inter-

faces reduce loses, while efficient sili-
con carbide Mosfets in the inverter lead 
to system-level savings.

Within the ACeDrive project, the ePOP 
tool has been used to consider a wide 
range of topology options in the inverter, 
motor, and transmission to ensure clarity 
of progression by identifying the most 
promising avenues for further study. To 
be of maximum value, the tool must 
deliver results with a consistently high 
level of accuracy when measured against 
data generated in the real world.

A recent test program saw Worldwide 
Harmonized Light Vehicle Test Proce-
dure (WLTP) energy demand predictions 
for a premium battery electric SUV cor-
related with real test data generated by 
the collaboration project partner, GKN 
Automotive. The data is intended to form 
a baseline for later comparison with a 
prototype drive unit, but it also presents 
an opportunity to analyze the accuracy 
of the simulation process. In fact, the ini-
tial modellings were found to be accu-
rate to within 3.22 %, while fine-tuning 
brought that to 0.25 %, TABLE 1.

REAL-WORLD TEST ENVIRONMENT 
AND COMPUTER SIMULATION

Testing was conducted at the Horiba 
Mira Advanced Emissions Test Centre 
in Warwickshire (United Kingdom), 
using the CWT One climatic wind tun-
nel  with a four-wheel-drive chassis 
dynamometer rated to 150 kW power 

per axle of the Jaguar I-Pace test vehicle, 
Title Figure. WLTP drive cycle data was 
recorded for each axle and the energy 
demand calculated.

The vehicle model was populated 
with information for overall vehicle 
mass, wheel and tire sizes, drag coeffi-
cient and frontal area. Rolling resistance 
was characterized by vehicle speed ver-
sus drag force measured on the chassis 
dyno. The MotorCAD program provided 
the efficiency map for the motor, the 
Masta CAE software provided the map 
for the transmission, plus ePOP’s inverter 
loss model, combining the power module 
losses with the motor  efficiency map.

RESULTS

Both the physical vehicle and the simula-
tion were subjected to the WLTP drive 
cycle, with power losses calculated at 
each point within the motor, transmis-
sion and inverter. A combined plot, 
 FIGURE 2, provides perspective on the 
variation of motor operating point during 
the WLTP drive cycle with re  spect to the 
efficiency map. The results demonstrate 
that the correlation between the ePOP 
simulation and the real-world data for 
the total cumulative energy expended 
was  initially within 3.22 %, TABLE 1.

By directly comparing the vehicle and 
simulation data, small discrepancies can 
be identified at various points of the cy -
cle, FIGURE 3. At an enlarged scale, as 
presented in  FIGURE 4, discrepancies can 
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be clearly seen at points correspond-
ing to higher speeds, with much of it 
attributed to the contribution of the 
transmission efficiency alone. Engineer-
ing experience combined with knowl-

edge regarding the limits of the factors 
included in the modelling led to the 
hypothesis that a significant portion of 
this was likely caused by churning of  
the lubricant within the transmission.  

By modifying the assumptions in the 
transmission model to include a closer 
representation of those loses, the simu-
lation to measurement correlation was 
improved from 3.22 to 0.90 %.
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Furthermore, motor efficiency was 
observed to be reduced at speeds higher 
than 2800/min. Again, experience sug-
gested this was potentially at least par-
tially attributable to windage, the effect 
of air resistance experienced by the ro -
tor within the confined housing of the 
motor. By accounting for this and other 
high-speed losses within the motor 
model, the correlation was further 
improved to 0.25 %, TABLE 1.

CONCLUSIONS AND OUTLOOK

Since key strategic decisions regarding 
the optimal powertrain architecture can 
often come down to small percentage 
point differences, it is important that 
the data being considered should pro-
vide an accurate picture of the relative 
costs and benefits – both financial and 
in performance terms – of each configu-
ration. As Drive System Design could 
demonstrate here, the ePOP process can 
deliver valuable assessments of critical 
factors such as efficiency and cost in 
high accuracy when considering the 
trade-offs between powertrain designs, 
even in its initial configuration. With 
modest revisions, that accuracy im -
proved from 3.22 to 0.25 % – a level 
that can instill confidence in the chosen 
architecture that can also lead to re -
duced development effort and costs,  
and a compressed and more rapid 
time-to-market.

Many of the lessons learned in this 
program can be applied to future proj-
ects, for example enhancing the com-
plexity of modelling scenarios to account 
for additional factors and losses such as 
lubricant churning and rotor windage. 
Although rising complexity can lead to 
extended simulation and computing 
times, this is countered by ePOP’s ability 
to clearly signal at an early stage which 
powertrain configurations are worthy of 
further analysis, with the designs re -
fined prior to making a final concept 
selection.
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